Evidence-based measures of effect
Use the empirical literature to your advantage
Without an a priori calculation, you could frivolously waste months or years of your life conducting a study only to find out that you only needed 100 in each group to achieve significance. Or, with the inverse, you conduct a study with only 50 patients and find out in a post hoc fashion that you would have needed 10,000 to prove your effect!
If you are using Research Engineer and G*Power to run your analyses, here are the things you will need:
1. An evidence-based measure of effect from the literature is the first thing you should seek out. Find a study that is theoretically, conceptually, or clinically similar to your own. Try to find a study that uses the same outcome you plan to use in your study.
2. Use the means, standard deviations, and proportions from these published studies as evidence-based measures of effect size to calculate how large of a sample size you will need. These values will be reported in body of the results section or in tables within the manuscript. It shows more empirical rigor on your part if you conduct an a priori power analysis based on a well-known study in the field.
3. Plug these values into G*Power using the steps published on the sample size page to find out how many people you will need to collect for your study.